
Isomorphic Web Application
Demo using React

Isomorphic Web Application

Oliver N.
Software Engineer

Agenda

1. A brief history of web development
- Server-rendered Multi-Page Application (MPA)
- Client-rendered Single Page Application (SPA)

2. What is Isomorphic JavaScript?
3. Why on the Earth do we need it?
4. How can I build isomorphic app?
5. Stop talking. Show me the code!

TL;DR

1. Isomorphic JavaScript is the pattern of running
JavaScript code on both server & client.

2. People are using it for production today.
Ask Facebook, Yahoo, Asana, Airbnb, Rising Stack, …

3. This is not another talk about NodeJS!

once upon a time…

<?php
echo “Hey, a web server is talking to you !!”;
echo “How many {$item.name} do you want to buy?”

?>
<form>

<input name=“your-name” />
<input name=“quantity” />

</form>

then…

then…

then…

then…

then…

Today (Dec, 2014)

http://modulecounts.com

Traditional Multi-Page Application

https://www.slideshare.net/spikebrehm/jsconf-us-2014-building-isomorphic-apps

Traditional Multi-Page Application

• Server-rendered content,
Improving user experience by using AJAX, JQuery, …
• Serving HTML on first-load is fast.
• Crawlers, screen-readers are happy with HTML.

But:
•Maintain UI render and logic in both client and server
• Duplicate application logic in (usually) two languages, two

frameworks, two development stacks, two templates, …

Single Page Application

https://www.slideshare.net/spikebrehm/jsconf-us-2014-building-isomorphic-apps

Single Page Application

• Client-rendered content
• Separate application logic and data retrieval
• More interactivity, optimistic UI, offline, mobile

But:
• Not SEO-friendly.
• Still have to pre-render pages on server for crawlers.

• Users have to wait a few seconds of blank page or loading spinner
before seeing the content.

Multi-Page Application

OR

Single-Page Application

We have another option:

The best of both worlds

We have another option:

Isomorphic Web Application

https://www.slideshare.net/spikebrehm/jsconf-us-2014-building-isomorphic-apps

Isomorphic Web Application

Mix server-rendered and client-rendered content

• On first page load, serve real server-rendered HTML.
• Client-side JS app bootstraps on top of server-rendered

HTML rather than bootstrapping into an empty div.
• From that point on, it's a client-side JS app.

Taking the best of both worlds

• Performance
• MPA - Serving fully-formed HTML is fast.
• SPA - AJAX, transport data instead of HTML.

• Connection quality
• SPA can handle client state, request only needed data.

• SEO & Accessibility
• MPA – crawlers & screen readers needs HTML. Google will always prefer MPA.

• UX
• SPA - more interactivity, optimistic UI, offline first, client first, mobile first

• Maintainability

So, do I have to rewrite my app in NodeJs?
It’s terrible!

So, do I have to rewrite my app in NodeJs?
It’s terrible!

No, you don’t have to. Just use your preferred stack
plus a few code for NodeJs.

Are there anyone building isomorphic app in
production?

Are there anyone building isomorphic app in
production?

Facebook Instagram RisingStack
Asana Meteor Yahoo! Mail

(next version*)

https://www.slideshare.net/rmsguhan/react-meetup-mailonreact

https://www.slideshare.net/spikebrehm/jsconf-us-2014-building-isomorphic-apps

But don’t use it.

Let’s build our own
Isomorphic application

Let’s build our own isomorphic application

•Understand Isomorphic JavaScript
• Environment independent
• Shimmed per environment

•Building blocks

Understand
Isomorphic JavaScript

Environment-independent

•Do not depend on environment-specific features

Browser: window, DOM
NodeJs: process, “fs”

Shimmed per environment

•Provide shims for accessing environment-specific
features so we can use the same API

Browser: xhr.open(‘GET’, ‘http://example.com’)
NodeJs:
Shim:

http.request({ host: ‘example.com’, path: ‘/’ })
superagent.get(‘http://example.com’)

Most of your favourite JS libraries
are Isomorphic

You can use these libraries on server or client

jquery
backbone
react
moment
superagent
…

underscore
handlebar
mithril
numeral
i18next

Building blocks

Building blocks: what do we need?

View: Render HTML with or without browser’s DOM.
Routing: Navigate through the application.
Communicating: Send AJAX or HTTP requests.
Stores:
States:

Store application states.
Transfer application states from server to client.

Bundling: Combine all our node modules to a single file
that can run on browser.

Building blocks: which libraries can we use today?

View: react, handlebar
Routing: direction, flux-router-component
Communicating: superagent, fluxible-plugin-fetchr
Stores:
States:

flux, backbone model
express-state or implement your own

Bundling: browserify, web-pack

React

•Virtual DOM

Browser: React.render(<App />, document.body)
NodeJs: React.renderToString(<App />)

Browserify

• require() node modules in browser.
•Provide shims for node-specific features that can run

on browser.
•Bundle all modules to single script file.

Demo
using React

Thanks for your listening !!

Oliver N.
Software Engineer

