
Golang #5
TO GO
or

NOT TO GO

Oliver N.
Software Engineer

Go is an optional language released in 2012
(It does not force you using it like
Java for Android or Obj-C for iOS)

Why is it so popular today?

Who are switching to Go?

(definitely not mobile devs)

Found Starting stack Trends

Twitter 2006 Ruby on Rails
Write new services in Golang
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-
in-real-time

Dropbox 2008 Python
Migrate performance-critical
backends to Golang
https://blogs.dropbox.com/tech/2014/07/open-sourcing-our-go-
libraries/

GitLab 2011 Ruby on Rails
Ruby on Rails
Partially use Golang
https://gitlab.com/gitlab-org/gitlab-git-http-server

Parse 2011 Ruby on Rails
Golang
http://blog.parse.com/learn/how-we-moved-our-api-from-ruby-to-go-
and-saved-our-sanity/

Koding 2011 NodeJs Golang
https://www.quora.com/Why-did-Koding-switch-from-Node-js-to-Go

https://blogs.dropbox.com/tech/2014/07/open-sourcing-our-go-libraries/
https://blogs.dropbox.com/tech/2014/07/open-sourcing-our-go-libraries/
https://gitlab.com/gitlab-org/gitlab-git-http-server
http://blog.parse.com/learn/how-we-moved-our-api-from-ruby-to-go-and-saved-our-sanity/
http://blog.parse.com/learn/how-we-moved-our-api-from-ruby-to-go-and-saved-our-sanity/
https://www.quora.com/Why-did-Koding-switch-from-Node-js-to-Go

Why Go?

1. Single binary deployment
2. Minimal language
3. Easy concurrency
4. Full development environment
5. Multi-arch build
6. Low-level interface
7. Getting started quickly

Nope. Only 1 reason.

Nope. Only 1 reason.

It just works!

Remember the day
when you wrote your first program in University.

int main(int argc, const char* argv[])
{ printf("%s", "Hello world");
return 0;

}

$./hello
Hello world

Then things get so complex…

What is “AbstractUniversalModelFactoryBuilder” ?
When will we use “abstract class” or “interface” ?
Hey, “callback” or “promise” or “async.js” or “yield”?
How to run your app on multiple-cores computers ? (hint: Node.js “cluster”)
How to correctly install all these dependencies?
“MVC” or “ORM” or “EntityFramework” or “name-your-fancy-framework” ?
Why my database got “undefined” instead of my beautiful numbers?
Why did you use “tab” instead of “4 spaces” ?

Then things get so complex…

Why get into trouble?

Why get into trouble?

Programming languages are tools to
build my beautiful applications.

Nothing more!

Why people create so many things to
simplify life of developers?

- Create applications without writing code.
- Build real-time mobile applications without server code.
- Automatically scale up without manually config.
- ORM, frameworks, and IDE.
- …

Because development is hard.

Because development is hard.

Life is short.

Keep building your awesome applications.

Just Go!

Just Go!

import "fmt"
func main() {

fmt.Println("Hello world!")
}

$./hello
Hello world!

1. Cross platform build
2. Garbage collector
3. Run on multiple-core by default
4. Easy to learn and write
5. Consistent coding style, easy to read others’ code
6. Super easy deployment and config
7. Good and consistent performance
8. No more crazy “AbstractUniversalFactory…”
9. No more OOP, ORM, fancy frameworks, …

Just write code that matter.

Writing a web server
import (

"net/http"
"fmt"

)

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello World!")

}

func main() {
http.HandleFunc("/", handler)
http.ListenAndServe(":8080", nil)

}

Go is a language for engineers

• Go make development life simpler
but do not try to hide nasty things.

• You still need your computer science knowledge.

When not Go?
1. Mobile development
2. Web development
3. Game development
4. Data scientist
5. Low-level drivers
6. Performance critical code
7. Prototyping applications
8. MVC applications
9. Shared host (PHP, ASP.NET)

When not Go?
1. Mobile development → Java, Obj-C, .NET
2. Web development → JavaScript
3. Game development → Game engines
4. Data scientist → Python, R
5. Low-level drivers → C, Rust
6. Performance critical code → C, C++, Rust
7. Prototyping applications → Node.js
8. MVC applications → PHP, ASP.NET, Ruby on Rails
9. Shared host (PHP, ASP.NET) → Wordpress!

When Go?
1. Distributed environment

Server development, web services, api

2. Portable
Command line tools

3. You care about team productivity
and good performance & quality.

Golang #5

THANK YOU

Oliver N.
Software Engineer

