
TechTalk
The fundamental problems of

GUI applications
& why people choose React

Oliver N.
Software Engineer

TL;DR

• All applications for normal users are GUI applications.
• The fundamental problem is rendering GUI

(include assembling GUI, handling user input and
integrating with application logic).

• This is not another talk about React, ES2015, Webpack,
and other fancy things!

Desktop applications are GUI applications

Desktop applications are GUI applications

Mobile applications are GUI applications

Desktop applications are GUI applications

Mobile applications

Web applications

are GUI applications

are GUI applications

Every application you use daily
is

GUI applications

Every application you use daily
is

GUI applications

(We developers* are the only ones
that work with terminal**)

* Including programmers, hackers, specialists, etc.
** Even the terminal itself is a GUI application!

So if you want to build an application
for normal users,

you have no choice but GUI application!

Let’s build a basic GUI application (1)
(without GUI library & framework)

Tier 1:

Bare metal

What do we have?

• A drawing buffer for output
• An input processing unit
• A programming language
• No GUI library or framework

Let’s build things from scratch*!

* Sample code using JavaScript.

1235

The game loop

Process input

Update state

Render

while (playing) {

processInput();

updateState();

render();

waitForNextFrame();

}

The game state

var gameState = {
score: 1235,
time: 1200,
player: {

x: 120,
y: 30,

},
enemies: […],
bullets: […]

};

1235

The rendering function

function render() {
renderBackground();
renderEnemies();
renderCharacter();
renderBullets();
renderScore();
renderTimeBar();

swapBuffer();
}

1235

Updating state

function updateScore(val) {
gameState.score += val;

}

function updatePosition(dx, dy) {
gameState.player.x += dx;
gameState.player.y += dy;

}

Life of a GUI application

state
1

1235

render()

Life of a GUI application

state
1

1235

1235

state
2

render()

render()

updateState()

Life of a GUI application

state
1

1235

1235

state
2

render()

render()

processInput()

updateState()

processInput()

Life of a GUI application

state
1

1235

1235

state
2

render()

render()

processInput()

updateState()

processInput()

Luckily you don’t have to
write “the loop” yourself.

The operating system handles it for you.

The fundamental problems
of GUI applications

The problems

• Creating and assembling GUI
• Handling user input
• Integrating GUI & business logic

Basic GUI application architecture

Viewstate
render()

input input
logic

Assembling GUI

Viewstate
render()

input input
logic

Viewstate
render()

input input
logic

Viewstate
render()

input input
logic

Assembling GUI

Viewstate
render()

input input
logic

Viewstate
render()

input input
logic

Viewstate
render()

input input
logic

input

render()

Tier 1

• Creating and assembling GUI → render() function
• Handling user input → (…)
• Integrating GUI & business logic → do it yourself

What does a modern
operating system offers?

Tier 1: Operating System

Bare metal

Process input

Update state

Render

onClick()
onKeydown()

WM_LBUTTONDOWN
WM_KEYDOWN

onPaint()

WM_PAINT

Application
business logic

Application
input logic

Application
rendering logic

Operating System ApplicationEvent system

What does a modern operating system offers?

• Handle “the loop”
• Process raw input and provide event system

What does a modern operating system offers?

• Creating and assembling GUI → (defer to app platform)
• Handling user input → Event system
• Integrating GUI & business logic → do it yourself

Let’s build a basic GUI application (2)
(without GUI library & framework)

Tier 1: Operating System

Tier 2:

Close to bare metal

What do we have? (at tier 2)

• Component system
• Event system

Sample code using Windows API*

*Win32 & COM API. Read more:
https://msdn.microsoft.com/en-us/library/windows/desktop/ff381399(v=vs.85).aspx

The application state

struct {
int score,
int time,
PLAYER player,
ENEMIES enemies,
BULLETS bullets

} gameState;

1235

The rendering function

LRESULT CALLBACK WndProc(HWND hWnd, UINT
message, WPARAM wParam, LPARAM lParam)
PAINT_STRUCT ps;
HDC hdc;
switch (message) {

case WM_PAINT:
hdc = BeginPaint(hWnd, &ps);
// ...

EndPaint(hWnd, &ps);
break;

}
};

1235

Composing components

• Create child windows
• Attach them to the app window
• In response to WM_PAINT:
• Pass WM_PAINT to child windows

Handling input

• Handling user input
Response to input events WM_LBUTTONDOWN, WM_KEYDOWN

• Handling application life cycle WM_CREATE, WM_DESTROY

Process input

Update state

Render

onClick()
onKeydown()

WM_LBUTTONDOWN
WM_KEYDOWN

onPaint()

WM_PAINT

Application
business logic

Application
input logic

Application
rendering logic

Operating System ApplicationEvent system

What does a modern
application platform offers?

Tier 1: Operating System

Tier 2: App Platform

Close to bare metal

Android Platform

• Composing elements: XML Layout, GUI components
• Handling user input: Event system
• Integrating business logic: Callback

<Button
xmlns:android="http://schemas..."
android:id="@+id/button_send"
android:text="@string/button_send"
android:onClick="sendMessage" />

public void sendMessage(View view) {
// Do something

}

http://developer.android.com/guide/topics/ui/controls/button.html

http://schemas./
http://developer.android.com/guide/topics/ui/controls/button.html

Windows Presentation Foundation (WPF)

• Composing elements: XAML, GUI components
• Handling user input: Event system
• Integrating business logic: Handler

<Button
Grid.Column="1" Grid.Row="3"
Margin="0,10,0,0" Width="125"
Height="25" HorizontalAlignment="Right"
Click="Button_Click">View</Button>

private void Button_Click(
object sender, RoutedEventArgs e) {
// Do something

}

https://msdn.microsoft.com/en-us/library/mt270964.aspx

Web Platform (HTML & JS)

• Composing elements: HTML, GUI components
• Handling user input: Event system
• Integrating business logic: Callback

<button
style="width:100px;height:40px"
onclick="sayHello()">
Say Hello

</button>

function sayHello(e) {
// Do something

}

What does an application platform offers?

• Creating and assembling GUI → Pre-built components,
Domain specific language (DSL) for GUI

• Handling user input → Event system
• Integrating GUI & business logic → Callback, set state

Let’s build a basic GUI application (3)
(without GUI library & framework)

Tier 3: App

Tier 2: App Platform

Tier 1: Operating System

What do we have? (at tier 3, HTML & JS)

• DSL & pre-built GUI components
• Event system
• Callback & set component state
• No GUI library or framework.

We still want to create our custom components!
Let’s build a TODO application.

The application state

var appState = {
todos: [{
title: “hello”,
complete: false

}, {
title: “world”,
complete: false

}]
};

Updating state

function addTodo(label) {
appState.todos.push({

title: label,
completed: false

});
}

function toggle(index) {
var item = appState.todos[index];
item.completed = !item.completed;

}

The rendering function

function render() {
// !?

}

The rendering function – First try

function render() {
var $listTodos = document.getElementById(“todos”)
for (var i=0; i < appState.todos; i++) {

// update, insert or delete DOM elements
}

var $numActive = document.getElementById(“num-
active”)
$numActive.innerHTML = getNumActive();

// ...
}

So far, we have defined application state
and logic just fine.

The only hard part that kept us back is
rendering step.

(Include generating HTML, keeping updated with app state
and registering event callbacks)

The rendering function – Second try

var lastState; // store last appState for comparing
function render() {
var $listTodos =
document.getElementById(“todos”) for (var i=0; i
< appState.todos; i++) {

// update, insert or delete DOM elements
}

var $numActive = document.getElementById(“num-
active”)
$numActive.innerHTML = getNumActive();

// ...
lastState = deepClone(appState);

}

We have tried storing last application state
for rendering only changed parts.

This is what frameworks like Angular.js or
Backbone (Underscore) offers.

Enter
MVC & MVP

MVC

• Applying Separation of
Concern to GUI applications.

• Input event
→ Controller
→ Model
→ View

MVP

• Applying Separation of
Concern to GUI applications.

• Model → Presenter → View
• View → Presenter → Model

Backbone.js
var Todo = Backbone.Model.extend({

default: { title: "", complete: false },
toggle: function() {
this.save(…); // trigger "change" (model)

}
});

var TodoView = Backbone.View.extend({
template: …,
events: …, // callback to manipulate model (handled by controller)
initialize: {
this.listenTo(this.model, "change", this.render); // listen to "change"

},
// rendering function (view)render: function() { … },

// …
});

Angular.js (version 1)
function TodoCtrl($scope) {

var todos = $scope.todos = [];

$scope.addTodo = function() { // user event
todos.push({ title: $scope.newTodo, completed: false }); // update state

};

// state-change event$scope.$watchCollection("todos", function() {
// …

});
}

<form id="todo-form" ng-submit="addTodo()"> … </form>
<ul id="todo-list">

<li ng-repeat="todo in todos"> …

What does a
application MV* framework offers?

Tier 3: App

Tier 2: App Platform

Tier 1: Operating System

What does a MV* framework offers?

• Creating and assembling GUI → view, template
• Handling user input → user event
• Integrating GUI & business logic

→ state-change event (Backbone.js, Angular.js)

Wow, so many concepts!
model, view, template, controller, presenter,

user event, state-change event

Let’s return to our starting architecture

Life of a GUI application

state
1

1235

1235

state
2

render()

render()

processInput()

updateState()

processInput()

Enter React solution

Let’s put aside the fancy ways to define
application state.

The only hard part is rendering step.

The application state

var appState = {
todos: [{
title: “hello”,
complete: false

}, {
title: “world”,
complete: false

}]
};

Updating state

function addTodo(label) {
appState.todos.push({

title: label,
completed: false

});
}

function toggle(index) {
var item = appState.todos[index];
item.completed = !item.completed;

}

The rendering function

React.createClass({
render: function() {

return (

{
appState.todos.map(function(item) {

return { item.title } ;
})

}

);
}

});

Handle state change
React.createClass({

addTodoHandler: function() {
var label = this.refs.inputTodo.value;

// update application state
// trigger rendering function

addTodo(label);
this.forceUpdate();

},
render: function() {
return (

<div>
<input ref="inputTodo"/>
<button onClick={this.addTodoHandler}/>
 …

</div>
);}

});

Life of a GUI application

state
1

1235

1235

state
2

render()

render()

addTodoHandler()

addTodo()

toggleHandler()

toggle()

React lets us work with our classic architecture
and helps solving the hard part: rendering!

No need to rewrite our application in an opinion way.

We only need to understand 2 functions
to start working with React:
- forceUpdate()
- render()

What does React offers?

• Creating and assembling GUI → React components
• Handling user input → user events
• Integrating GUI & business logic

→ keep GUI updated when application state changed

Why do people choose React?

What do people choose React?

• As we see, the only hard part is rendering step.
• React is a view library. It solves the right problem and

solves it well.
• It leaves application state for us. This is good because:
• We work with classic architecture of GUI applications.
• We can choose which architecture works best for us.
• We can migrate legacy applications to React without

changing so much code.

How to choose a library or framework?

1. Write the prototype by your own
without using library or framework.

2. Understand what them offer.
3. Choose only which ones you need.
4. Keep in mind the design that you can switch to

another library later.

What’s next?

• Redux, an application state solution for React.
• Because we understand how to handle application state,

we can decide to use Redux or not. It’s up to you.

THANK YOU

TechTalk

Oliver N.
Software Engineer

TechTalk
The fundamental problems of

GUI applications
& why people choose React

Oliver N.
Software Engineer

